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ABSTRACT

This paper studies chemical reaction networks with poly-PL kinetics, 1.e. positive linear
combinations of power law kinetics. The analysis of such systems is motivated by the study of
Veloz et al., that proposed to analyze the dynamics of Evolutionary Game Theory models using
Chemical Reaction Network Theory (CRNT) in the form of polynomial kinetics (POK). Our
approach is based on the fact that poly-PL kinetics generate power law dynamical systems,
which via a method recently introduced by G. Craciun can be mapped to EMAK systems.
These are the analogue of mass action kinetics on Euclidean embedded graphs (E-graph). Our
main structural results show the coincidence of the stoichiometric subspaces of the original
network and its associated E-graph as well as the conservation of the positive dependency,
which is a necessary condition for the existence of positive equilibria. However, our overall
analysis shows Craciun’s method is only of limited use for studying PYK systems since only
very special kinetics reflect the structural properties of the original chemical kinetic system.

Keywords: Chemical Reaction Networks, E-graph, Poly-PL Kinetics, power law kinetics

INTRODUCTION

Poly-PL kinetics (PYK) are kinetic sys-
tems consisting of non-negative linear com-
binations of power law functions. It contains
the set PLK of power law kinetics as “mono-
PL kinetics with coefficient 1.” Like PLK, the
definition domain of PYK is the positive or-
thant RZ*. However, as subsets, this may be
extended to the whole non-negative orthant

A poly-PL kinetics 1s rate constant-
interaction decomposable, i.e. an element of
rate constant-interaction map decomposable
kinetics (RIDK). For each positive integer h,
the set PYK,, consists of all poly-PL kinetics
with h positive terms. The set {PYK,|h > 0}
forms a countable covering of PYK.

RZ*. PYK and PLK generate the same sets of
species formation rate functions (SFRF), the
power law dynamical systems (or GMA sys-
tems in BST terminology).

The set of polynomial kinetics (POK) was
first introduced by Veloz et al. (2014) for the
realization of replicator system-based evolu-
tionary games with polynomial payoff func-
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tions (mostly linear functions). Polynomial
kinetics result in polynomial dynamical sys-
tems as ODEs, which is a classical area of re-
search in mathematics. The domain of defi-
nition is usually extended to the whole non-
negative orthant. The set of non-negative
equilibria of polynomial dynamical system is
a subset of an algebraic variety (and this
may be a reason for algebraic geometry re-
searchers to become interested in pursuing
applicability of their theory). Veloz et al’s pro-
posal is the following:

The replicator equation implies a
reaction network: it can be written
as

iy, = vy (fr(2) — o(x))

where z, is the proportion of play-
ers using strategy k, fi(z) is their
fitness and ¢(z) = Z:.L:l z,; f;(x)
the average fitness of the pop-
ulation (dilution flow in chemi-
cal reactions) represented by z =
(x4,...,2,). The reaction network
consists of decay reactions of the
form z, — 0 due to the dilu-
tion term —x,¢(z). The produc-
tion term x,, f, (x) implies catalytic
reactions of the form

where i,,...,7,, are those species
that are necessary for k& to repli-
cate, i.e., f(x) is these species have
positive concentrations in x.

As we want to see this case in the bigger set,
our interest to study the concept of its super-
set PYK arises.

So far we have identified three (3) ways
to study poly-PL kinetic systems. First is
the direct way that deals with the proposed
concept of Veloz et al. (2014). In this frame-
work, evolutionary games with polynomial

payoff functions lead to polynomial kinetic
systems. The consideration of the superset
of poly-PL kinetics, i.e. of real exponents
instead of just non-negative integers, came
from the observation that “sums of power law
functions” occurred in power law approxima-
tions of some carbon cycle models (Fortun et
al., 2018) which were analyzed with CRNT
methods. Hence, we present a simple dynam-
ically equivalent representation to which, in
the case of poly-PL replicator systems, the
Weakly Reversible Theorem for all complex
factorizable poly-PL kinetics (PY-TIK) can be
applied (Talabis et al., 2019).

Second i1s via dynamic equivalence to
power Kkinetic systems using S-invariant
Termwise Addition of Reactions (STAR) ap-
proach. STAR (S-invariant Termwise Ad-
dition of Reactions) is a network structure-
oriented approach to poly-PL Kinetics based
on the following basic observation: for the
rate function K,(x) and for a reaction r,
y;, — vy, in a PYK system (NV,K) with
N = (8,6,R) we have K, (z) = k;(a;1M;; +
ot agn M) (y; — ys) = kyag My (y; — y;) +
o+ kyaz, My, (y; — y;) where M, ; are the h
power law functions for the ith reaction. A
STAR method introduces additional different
reaction(s) for each of the h identical reac-
tion vectors y, — y,; in the sum. This enlarges
the sets of reactions and complexes, so the
new CRN N* = (§,€*, R*) and new Kkinetics
K*: IRCE — R* are constructed. One method
focuses on the multiples of the reaction vec-
tors and the other one uses the multiples of
the maximal stoichiometric coefficients.

Lastly is via Craciun’s method which is
the subject of this paper. Since poly-PL ki-
netics generates power law dynamical sys-
tems (called “polynomial dynamical systems
by Craciun for various reasons), they can
be represented as E-MAK systems. Polyno-
mial dynamical system can be regarded as
being generated by some “Euclidean Embed-
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ded Graph” (also called E-graph). This paper
aims to discuss the detailed description of the
map PYK to EMAK, establish some network
properties and produce results on positive
equilibria of PYK systems based on EMAK
representations.

The paper is organized as follows: In Sec-
tion 2, necessary concepts and previous re-
sults in CRNT that are need to understand
the latter sections are presented. In Sec-
tion 3, the concept of Euclidean Embedded
Graph will be explored. In Section 4, a de-
tailed description of the map PYK (N) to
E-Graph/EMAK will be discussed. In Sec-
tion 5, some network structure relationships
will be established and in Section 6, results
on positive equilibria of PYK systems based
on EMAK representations will be produced.
This will be followed by sections exploring
PYK systems with cycle terminal, t-minimal
and PYK-SSK associated EMAK systems.
Lastly, in Section 7, summary and conclusion
of the results will be presented.

FUNDAMENTAL CONCEPTS OF
CHEMICAL REACTION NETWORKS
AND CHEMICAL KINETIC SYSTEMS

Chemical reaction networks and ki-
netic systems

In this section, we discuss fundamental con-
cepts and results about chemical reaction net-
works (CRN) and chemical kinetic systems
(CKS). We consider a CRN as a digraph with
vertex labelling. On the other hand, our dis-
cussion on CKS focuses on power-law kinetic
system.

Definition 1 A chemical reaction net-
work (CRN) is a digraph (€, X) where each
vertex has positive degree and stoichiometry,
1.e., there is a finite set § (whose elements are

called species) such that € is a subset of Z$.
Each vertex is called a complex and its coor-
dinates in RS are called stoichiometric co-
efficients. The arcs are called reactions.

We denote the number of species with m,
the number of complexes with n, and the
number of reactions with r. Also, we denote
this nonempty finite collection of reactions as
R C (€ x €). We implicitly assume the sets
are numbered and let

» X
and ‘%:{leR27"'7Rr}

where m,n and r are their respective cardi-
nalities. Thus, RS =~ R?. Consider the reac-
tion

S:{X:[?XQ?"‘ 6):{01,02,.--70,“}

aX, + Xy — v X3,

X,,X, and X5 are the species. The com-
plexes are aX; + X, and yX5. In particular,
aX, + X, is called the reactant (or source)
complex and y7X5 the product complex.
The number of reactant complexes is denoted
by n,..

The stoichiometric coefficients are the
non-negative coefficients «, 5 and v. Under
mass action kinetics (MAK), the rate at which
the reaction occurs is given by the monomial

K = kXX5

with rate constant k£ > 0. We can generalize
this by considering power-law kinetics. The
reaction rate can be

K =kX¢X3

where ¢ and b can be any real number. We
call ¢ and b as kinetic orders. Within a net-
work involving additional species and reac-
tions, the above reaction contributes to the
dynamics of the species concentration as

Xl —
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The reactant map p : X — € maps a re-
action to its reactant complex while the prod-
uct map 7 : & — € maps it to its product
complex.

Definition 2 The linkage classes of a CRN
are the subnetworks of a reaction graph
where for any complexes C;, C; of the subnet-
work, there is path between them. The num-
ber of linkage classes is denoted by ¢.

A linkage class is said to be a strong link-
age class if there is a directed path from C;
to C; and vice versa for any complexes C;,C;
of the subnetwork. The number of strong
linkage classes is denoted by s¢. Moreover,
terminal strong linkage classes, the num-
ber of which is denoted as ¢, are the maximal
strongly connected subnetworks where there
are no edges (reactions) from a complex in
the subgraph to a complex outside the sub-
network. The terminal strong linkage classes
can be of two kinds: cycles (not necessarily
simple) and singletons (which we call “termi-
nal points”).

Example 1 Given a chemical reaction net-
work (CRN):

R,:2A— B
R, : B —2A
R,:A+3B—2A+B
R,:2A+B— A+ 3B

As observed, m = 2 (species), n = 4 (com-
plexes), n,. = 4 (reactant complexes) and r = 4
(reactions). Also, we have

$={A, B)
@Z{Cl :2A,C2:B703 :A+3B,C4:
24 + B}

The number of linkage classes is two (¢ =
2),£, = {Ry,Ry} and £, = {R3,R,}. Both
subnetworks are strong linkage classes which
implies that the number of strong linkage
classes is two (sf = 2).

Definition 3 A CRN is called

1. weakly reversible if s¢ = /;

2. t-minimal if t = ¢;

3. point-terminal if t =n —n,; and
4. cycle terminal if n —n,. = 0.

The above example is weakly reversible, t-
minimal and cycle terminal.

The dynamical system of the CRN of our
running example can be written as

Ry Ry, R3z Ry

' A -2 2 1 -1
X_[B]_[l -1 -2 2 |
k12Af11
k»2le2l

k34Af3le32
k;43Af41Bf42

= NK(x).

N is called the stoichiometric matrix and
K(z) is called the kinetic vector (or Kki-
netics). The pairing of (N, K) is called a
chemical kinetic system (CKS). The ki-
netics aboce belong to power law kinetics
which have the form

s

K,(z) =k, HxFJ where 1<i<r
i=1

with k; € RZ* and F;; € R. Power law kinetics
is defined by an r x m matrix I = [F},], called
the kinetic order matrix, and vector k € R”,
called the rate vector. A particular exam-
ple of power law kinetics is the well-known
mass action kinetics where the kinetic order
matrix consists of stoichiometric coefficients
of the reactants. In the running example, we
assume power law kinetics so that the kinetic
order matrix is

A B

fin 0 Ry
F— 0 far Ry :

fa1 fs2 | Rs

f41 f42 R4
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where f;; € R. However, in this paper, we are
more interested in a kinetic system composed
of non-negative linear combinations of power
law functions.

We further decompose the stoichiometric
matrix N. Writing the stoichiometric com-
plexes as column vectors of the (molecular-
ity) matrix Y, we have

¢ Cy O3 Gy
1 0 1 2] A4
Y‘[o 1 3 1] B’

Considering the digraph of our CRN, the
incidence matrix

otherwise

(Ia)(i,j) = {(1)
will be

R, R, Ry R,

1 1 0 07 ¢
S| 1 10 0 |G
a 0 0 -1 1 | Cy°

0o 0 1 -1] C,

Note that stoichiometric matrix N = Y,,.
Hence, the stoichiometric map N : R — R™
is defined as the composition Y o I,. The lin-
ear subspace of R™ defined by I'm N 1is called
the stoichiometric subspace, denoted as S.

The linear transformation 4, : R® — R®
called Laplacian map is the mapping de-
fined by

Ayz = Z

(¢,5)eR

kijwi(wj —w;),

where z; refers to the i*" component of z € R®
relative to the standard basis. Its matrix rep-
resentation is the n x n matrix such that

ks if i# 5,
s ={ o 7t
T Uk ke i i=g

ifiis the product complex of reaction j€ R

where k;,; 1s the label (called the rate con-
stant) associated to the reactions (j,7) € R.

Let s = dim S. The deficiency § is de-
fined as § = n — ¢ — s. This non-negative inte-
ger 1s, as Shinar and Feinberg (2011) pointed
out, essentially a measure of the linear de-
pendency of the network’s reactions. In the
running example, the deficiency of the net-
work is O sincen = 4, { =2 and s = 2. Itis
an important parameter in CRNT in estab-
lishing claims regarding the existence, mul-
tiplicity, finiteness and parametrization of
the set of positive steady states, defined as
E (N,K)={z € R*INK(x) = 0}.

Horn and Jackson (1972) introduced a

—1 ifiisthereactant complex of reaction je Rsubset Of E+ Cal]-ed the set Of Complex bal'

anced of equilibria denoted as Z,. A ki-
netic system is complex-balanced at a state
(i.e. a species composition) if for each com-
plex, formation and degradation are at equi-
librium.

Definition 4 A positive vector ¢ in R™ is
called complex balanced (CB) if K (¢) is con-
tained in ker I,. A chemical kinetic system is
called complex balanced if it has complex
balanced equilibria.

With regards of being complex balanced of
a chemical kinetic system, the following are
two known propositions.

Proposition 1 If a chemical kinetic system
has a complex balanced steady state, then the
underlying CRN is weakly reversible (Horn,
1972).

Proposition 2 If a chemical kinetic system
has deficiency 0, then its equilibria are all
complex balanced (Feinberg, 1972).
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Poly-PL Kinetics (PYK)

Poly-PL kinetics (PYK) are kinetic systems
consisting of non-negative linear combina-
tions of power law functions. Power law
kinetics is a subset of PYK represented as
“mono-PL kinetics with coefficient 1”.

After setting the standard ordering of
species X1, ..., X,,, we have the following def-
inition:

Definition 5 A kinetics K : RI* — R" is a
poly-PL kinetics if

1

K;(z) = ki<ai,1$F¢*1 + ...+ ai’ijz‘,j (1)

where 1 < i <, written in lexicographic order
with k; € R, F; 5,0, ; € R™and 1 < j < h,
(where h; is the number of terms in reaction
1). Power-law kinetics is defined by » x m ma-
trices F; , = [F;;], called the kinetic order
matrices, vectors k = [k;],a; ; € RZ, called
the rate vector and poly-rate vectors, re-
spectively.

Another concept on kinetics is defined as
follows:

Definition 6 A rate constant-interaction
map decomposable (RID) kinetics is a ki-
netics, such that for each reaction r, the coor-
dinate function K, :  — R can be written in
the form K,.(x) = k,. Iy .(x), with a positive
real number k£, (called a rate constant) and
Q € R™. We call the map I : Q — R¥ de-
fined by I, ,. as the interaction map and the
set of kinetics RIDK.

In the following, we consider complex
factorizable PYK systems, i.e. reactions
branching from a reactant all have the same
interaction map

¢,L($) == ai’ll‘Fi'1+-..+ai7j$Fi7j 'LUhere 1 é Z S

We say that a reactant complex y is a CF-
node for K if and only it is a CF-node for
K for each j and the coefficients a; ; coin-
cide for all reactions in its reaction set and for

each j. Moreover, we extend the definition of
reactant determined power-law kinetics (PL-
RDK) of (Talabis et al. , 2019) to poly-PL ki-
netics.

Definition 7 A poly-PL kinetic system has
reactant-determined kinetics if for any
two reactions a,b with identical reactant
complexes, the corresponding columns of ki-
netic orders for each F are identical, i.e.,
(Fr)gi = (Fi)p; fori=1,....m.

We also note that the PYK systems with
reactant-determined kinetics are precisely
the complex factorizable ones. For each ki-
netic order matrix F'pr where 1 < K < h, we
define the m x n matrix Yy defined as:

Y (F)ris
(YK>ij = {O,K

i1fjisareactant complex of reaction r.

otherwise

A PL-RDK kinetics is factor span surjec-
tive if and only if all rows with different reac-
tant complexes in the kinetic order matrix F
are pairwise different.

EUCLIDEAN EMBEDDED GRAPH
(E-GRAPH) and E-MAK SYSTEM

Craciun (2018) formally introduced Eu-
clidean Embedded Graph as follows:

Definition 8 A Euclidean embedded
graph (or E-graph) is a finite oriented
graph G = (V, F) whose vertices are labeled
by distinct elements of R™ for some n > 1.

With an abuse of notation, we identify the
set V with the set of vertex labels, i.e., we as-
sume that V' C R™. Moreover, we associate
to each edge e = (s,t) € E its edge vector
v(e) = t — s. Also, we define its source ver-
tex to be s(e) = s, and its target vertex to be

"t(e) = t.

Thus, according to this formulation, an
E-graph is almost the same as the concept
of chemical reaction network that we intro-
duced.
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Craciun’s definition is slightly more spe-
cial because an oriented graph is a digraph
with no 2-cycles. However, the formulation
above seems just a bit of sloppiness since
later in his paper, he speaks of reversible E-
graphs. Brunner and Craciun (2018) define
an E-graph as a directed graph, not just an
oriented graph. So, an E-graph is really iden-
tical with a chemical reaction network as de-
fined above.

Craciun introduced the concept of poly-
nomial dynamical system. Any autonomous
polynomial dynamical system (i.e., system of
differential equations with polynomial right-
hand side) on the strictly positive orthant R?
can be represented as

dx f: o ®
- = x 7‘U,L'
dt =

where z = (z,...,2,) € RZ, sq,...,s,, are

some vectors in ZZ, called exponent vec-
tors, z°: denotes the monomial x5 57 - 7"
and vq,...,v,, are vectors in R™. A solution
of (2) is a function = : I — RZ, that satisfies
(2), where I is an interval in R.

However, he broadened the scope of the
term to include the “power law dynamical sys-
tem” case. Note that, since the coordinates
Zq,...,x, are positive, the monomials z° are
well-defined even if the coordinates of the ex-
ponent vectors s, are arbitrary real numbers
(.e., 51,...,5,, are not necessarily in ZZ;). In
that case we say that Equation 2 is a power-
law dynamical system. The approaches
and results discussed in this paper apply not
only to polynomial dynamical systems, but
also to power-law dynamical systems. In this
paper, whenever we say “polynomial dynam-
ical system”, we mean “polynomial or power
law dynamical system”.

A further extension is to replace the con-
stant rate with a variable (but bounded) func-
tion. In other cases, the interaction network
we need to model is part of a larger network
that contains variables or “external factors”
that influence our system, but are not con-

tained in our system. In that case we can-
not use an autonomous dynamical system as
a model, but we may be able to use a non-
autonomous dynamical system of the form

dr & o
at = ;kz(t)x ‘U 3

where the functions k; are positive and uni-
formly bounded, i.e., there exists some € > 0
such that e < k;(¢) < 1 for all t. We will refer
to models of the form (3) as variable-k poly-
nomial dynamical systems.

Now, given a Euclidean embedded graph
G = (V,E), the polynomial dynamical sys-
tems generated by G are the dynamical sys-
tems on RZ given by

(jl—f = Z k. x5u(e) 4)
ecE
for some positive constants k.. Note that if
V C 7%, then (4) 1s just mass-action kinetics
for a chemical reaction network represented
by G, i.e, one where there is a reaction of the
form s(e) — t(e) for each edge e € E.

We express this construction in terms of
kinetics on a reaction network (or E-graph)
instead of dynamical systems. Also, the same
definition of a chemical kinetics on an E-
graph as with a CRN.

Definition 9 A kinetics K on a reaction net-
work (or E-graph) is called an E-MAK if
for each reaction (or edge) K_(z) = k_ x°(¢),
where k, > 0 for all z > 0.

Any power law dynamical system can be
realized as an E-MAK system. In particular,
the kinetics is RDK (Reactant Determined Ki-
netics) and FSK (Factor Span Surjective).

Let us note that for any variable-k polyno-
mial dynamical system (3) we can construct
an E-graph G that generates it, and G is
not unique. Assuming that the ordered pairs
(51,01), (52,02), -,

(8,5 Uy ) are distinct, the simplest way to con-
struct such a G is to choose the set of vertices

V={s;li=1,....m}U{s, +v;li=1,...,m},
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and the set of edges

E={(s;,s; +v;)lt =1,...

171 Y m} N

If we want to obtain a different E-graph
that generates (2), we can, for example, write
one of the vectors v, as a positive linear com-
bination of two different nonzero vectors, and
use these new vectors to obtain a graph with
m + 1 edges that also generates (2).

Note that if s, and s, +v, are non-negative
for all 7, then the E-graph is a CRN, and the
E-MAK realization is a MAK-realization.

Example 2 Consider a dynamical system

d

% = 3k (Ozy +3ky(t)22  (5)
dx

7; = kl(t)xl_k2(t)w%

for some functions k; () with € < k;(t) <  for
all ¢.

With this, we can write the vector form as
follows:

‘C%’ — k(D) (f’) + ko (t)23 (i) )

where xr = (2; ). Following (2), we can express
the above as:

d _
d%: = kq(t)z™ ( 13> + ko (1) (_31) (7)

where s; = (}) and s, = (J). Then, the sim-
plest E-graph G that generates the dynamical
system (5) has two edges, one edge from s; to
shi=s+ (7)) = ((1)) +(7%) = (%), and other
edge from s, to sh i=s,+ () = (5)+ (%) =

(8) illustrated as follows:

DETAILED DESCRIPTION OF THE
MAP PYK TO E-GRAPH/EMAK

We consider the Craciun map cp from
the set of power law dynamical systems on
PLDS (also described as polynomial dynam-
ical systems) to the set of Euclidean embed-
ded graphs. It is defined to satisfy some con-
ditions in order to avoid images that involve
trivial graphs. This is to eliminate PLDS re-
sulting to an E-graph with only one vertex.
Note that, for 42 = 3" z7'v; to be satisfied,
it must be the cases that the ordered pairs
(81,v1), (89,05), ..., (8, V,,,) are distinct.

Denoting the PLDS subset satisfying the
above condition as PLDS-, we have cp
PLDS~ — E-Graph. E-Graph consists of
pairs N/ = (§,€",R") with § = {z,} and €’
can have arbitrary real coefficients. The es-
sential property of ¢y is that with the EMAK
kinetics K’, the chemical kinetic system is
identical to the power law dynamical system.
Craciun (2018) remarked that this map is not
“unique” in the sense that there are many
other E-Graph representations of the power
law dynamical system.

Conversely, given an E-Graph, one can
always construct a power law dynamical sys-
tem coinciding with the right hand side of
the ODE’s of the associated EMAK system
of the E-Graph. The second component is
given the map from PYK to PLDS, where
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N = (5,6,%) is a CRN and § = {z,},
which associates to poly-PL Kkinetics to its
corresponding SFRF, i.e. the right hand
side of 42 — > en Ko(x)(y;. — y,.). Note
that each K, is a poly-PL vector function.
Clearly, this second map is not surjective.
The dynamic equivalence of (N,K) with
the EMAK system is according to definition
de _ 5 K@)y, —y,) = 25", For an
illustration we have:

Suppose the following are the PYK of a
CRN with the corresponding reaction vectors

2
K,(r) = klfﬁ%xng (?Ji — Y1) = (O)

1
Ky(o) = ko %50 —2) = (] ).

The corresponding SFRF is given by

dx 2 1
i kixiz9® <0> + kozTad-© (1>

We can express this form to PLDS where
z=(3!). That is

dx
E — k‘ll‘slvl + k}2£cs21}2.

whlere 51 = (04.15), Sg = (1?6% vy = (3) and
Vg = (1)

This is an equality between two vector
maps R® — R®. One can, hence, set the coor-
dinate functions equal so that conditions on
the s, and v;. These conditions specify when
an E-Graph (or its associated EMAK) is the
image of a PYK system.

SOME NETWORK STRUCTURE
RELATIONSHIPS

An E-graph is a more general concept than
a CRN because the stoichiometric coefficients
of an E-graph may be arbitrary real numbers,

while those of a CRN are restricted to be non-
negative integers.

Many concepts and results for CRNs also
hold for E-graphs. In particular, all con-
cepts and results involving only the digraph
structure (and not the vertex labeling) are
valid, such as those involving connectivity.
For example, the concepts involving terminal
classes such as cycle or point terminal, the
numbers ¢, ¢, and t., terminality, and their
relationships all hold without any change.

From now on, to have a standard nota-
tion, if V is the underlying CRN of a PYK sys-
tem, NV  denotes the associated E-graph. We
write K for the poly-PL kinetics and K, for
the associated EMAK. We shall consistently
use the subscript “E” for all objects associated
with the E-graph, e.g. S is its stoichiometric
subspace, ¢ 5 its deficiency, etc.

The following proposition extends the ge-
ometric interpretation of deficiency to E-
graphs (the proof is identical and extracted
from the paper of Mendoza et. al (2018)).

Proposition 3 The deficiency ¢ 5 is equal to
dim (ker YpNIm I, g).

Proof.
Basic dimensional consideration implies

dim(ker(Yg I, g))
= dim(ker(I,)) + dim(ker(Yg) N Im(I, g)).

From rank-nullity theorem,

dim(ker(Yg I, g)) = rg—dim(Im(Ygl, )) =rg—sg.

The rank of I, 5 corresponds to the number
of complexes minus the number of linkage
classes, so that

dim(Im(I, g)) =ng—L{g.
It follows that
dim(ker(l, g)) =rg—(ng—g) =rg+lg—ng.
And, hence,

dim(kerYgNIm I, )
=dim(ker(Yg I, g)) — dim(ker(1, g))
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=(rg—sg)—(rg+{lg—ng)
=ng—Llp—sg
by 0

We now extend the fundamental relation-
ship between reactant deficiency, ¢, 5 and
network deficiency, ¢ 5, to E-graphs. The fol-
lowing extracts are taken from the paper of
Mendoza et. al (2018):

Proposition 4 Let G be an E-graph with de-
ficiency 0 ; and reactant deficiency 6, ;. Then

o — 5p =T7Gg—t.g—AG)E.
In particular,

(@) if G is cycle terminal, then 0 < 6, p —

(i) if G is point terminal, then 65 — 4§, 5 =
(G g — AG) g

(i11) if G is point terminal and cycle terminal,
thenép —6, p <7(G)g — A(G) -

Proof.
dbp—d,g=ng—lg—Sg—n,.g+qg =
np—n,gLtp—Sgtqp =T(G)g—t.—A(G) g

(@) IfGiscycleterminal,t, g =ng—n, g =

0<:>tE :tCEﬁT(G)E_tCE :_eE.
Hence, dp — 6, g = —lg — A(G) g. Since
RE — Im YE, qE — CE 2 SE and

A(G) g 1s negative. Thus, §, p — 0 =
lp+ A(G)g < {g. For the lower bound:
Op =Ny p—qr =NEp—(g 2NEg—Cg =
dim ker Yg > dim(ker YgpNIm I, g) =
S

(1) If G is point terminal, ¢, p = 0, hence
the simpler formula.

(111) If G 1is point terminal and cycle terminal,
thent, p > 0, which implies the inequal-
ity.

O

Since EMAK systems are similar to MAK
systems, there are many results on MAK sys-
tems that are easily carried over to EMAK
systems. Some examples can be found in the
paper by Mendoza et al. (2018). A further ex-
ample is the following early result from Fein-
berg (1972):

Proposition 5 If an E-Graph has zero de-
ficiency, then any positive equilibrium is
complex-balanced.

Proof.

Recall that 05 = dim (Ker YpNIm I, ).
Since 0 = 0, the only vector in the intersec-
tion is the zero vector. Hence, if I, (K (z)) is
nonzero then it is not an equilibrium. Thus,
the claim follows. O

If the power law dynamical system is
generated by a poly-PL kinetics, then one
can study the relationship of properties of
the chemical kinetic system (N, K) and the
EMAK system, whose reaction network we
denote with V.

We continue to analyze connections be-
tween network properties of PYK and EMAK
systems. Note that through the use of the
double-indexed sum notation, it became clear
that the reaction vectors in the associated E-
graph are not merely linear combinations of
those in the PYK system, but were simply
positive multiples.

Let h; be the number of terms in the poly-
PL kinetic function for the ith reaction of NV
where i = 1,...,r. Let h := max; h;. We or-
der the terms in each kinetic function lexico-
graphically and divide the last term into new
terms to have h summands in each function.
Thus the SFRF f(z,,...,2,,) can be writ-
ten as a double sum 37 3. a; ;256 (Y, — y;),
i=1,...,rand j=1,..., hA.
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We show that the stoichiometric subspace
of the given network is equal to the stoichio-
metric subspace of the associated E-graph.

Proposition 6 Let (N, K) be a PYK system
and NV g the associated E-graph. Then Sy =
S.

Proof. Recall that Sg is generated by v,,’s.
Since v;; = a,;(y; — y;) are the reaction vec-
tors in NV , it clearly follows that Sz = S. O

Remark 1 Since the stoichiometric sub-
spaces coincide, the Craciun map can be
viewed as a transformation of a PYK system
to an EMAK system.

We also use above notations to prove the
following proposition on positive dependency.

Proposition 7 If V is positively dependent,
the NV g is positively dependent.

Proof. Let > a;(y; —y;) = 0 be the pos-
itive dependency relation in V. Since v,;; =
a;;(y;—y;) are the reaction vectors in V i , we
have ZJ(ZI(:)U”) = Zj ZZ Oéi(yg —y;) =
0. This means that N g 1s positively depen-
dent. O

Now, we explore the upper bounds for the
deficiency of the E-graph. These considera-
tions are important for the effective use of
current CRNT results for the inference of
properties of PYK systems. Most of the cur-
rent CRNT results, which could be extended
to EMAK systems, are about low deficiency
systems.

In Proposition 3, we showed that for an
E-graph, 6 p = dim(Ker YgNIm I, g).

The basis of our result is an upper bound
for the number of complexes in the associ-
ated E-graph. Due to our “filling up” conven-

tion, the number of distinct kinetic order vec-
tors (the F};’s) is at most hr. Since by as-
sumption, each F; leads to a distinct reac-
tion, F;; — F;;+v,;, 1t is also an upper bound
for the number of reactions in NV 5. This in-
fers the upper bound: ny < 2hr. We have the
following generic relationship:

Proposition 8 If NV is the underlying CRN
of a PYK system and NV  is the associated E-
graph then 6 < hr —s.

Proof. We observe that the sub-
space (Ker Ygp N Im I,p) 1is con-
tained in I, p(Ker Npg), hence dp <

dim I, p(Ker Ng)
rg—s < hr—s.

< dim(Ker Npg) =

O

Remark 2 An alternative proofis the follow-
ing: from the above, 65 :=ng — (g —s. We
first consider the case ny = 2hr, i.e. no ver-
tices coincide, then ¢, = hrand 6 p = hr—s. If
two vertices coincide, both the number of ver-
tices and the number of linkage classes are re-
duced by 1, hence the deficiency remains the
same. With each further coincidence of ver-
tices, the number of vertices is reduced by 1,
but the number of linkage classes may be re-
duced by 1 or remain the same (if the vertices
are in the same linkage class), hence the defi-
ciency may be further reduced, but the upper
bound remains valid.

Corollary 8.1 If hr =
h=1.

s, then 6 = 0 and

RESULTS ON POSITIVE EQUILIBRIA
OF PYK SYSTEMS BASED ON
E-GRAPH/EMAK REPRESENTATIONS

This section includes different results that
involve positive equilbria of PYK systems
based on the associated E-graph. We will
start with the case when the associated E-
graph of a PYK system is weakly reversible.
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Proposition 9 If (V,K) is a PYK system
whose associated E-graph is weakly re-
versible, then there are rate constants such
that (V, K) has a positive equilibrium.

Proof. If (N, K) is a PYK system whose asso-
ciated E-graph is weakly reversible, then the
reaction vectors (edge vectors) are positively
dependent. With this, for each reaction (edge)
(s,5"), there exists a positive number
such that

s,8’)

H(s,s’)(‘sl — S) =0. (8)

(s,8")eE

Suppose for N, {ks ¢)}ssrex 1S a set of
positive numbers satisfying (8) and suppose
c € R? is any positive composition.

We assign to the network the set of the
rate constants {k,_ .}, cx that satisty

k‘<s%8/)(cs):H<S’S/>,VS—>S/EW (9)

This leads us to conclude that there are
k € RS such that

dx
T = 2 Renen (e =) =0
( )

s—s’

Hence, (V, K) has a positive equilibrium. [

Recall that a MAK system is weakly re-
versible and has zero deficiency if and only if
it has positive equilibrium for each constant.
The next proposition is an EMAK analogue
of the said Deficiency Zero Theorem for MAK
systems. This involves factor span surjective
power law kinetics (PL-FSK).

Proposition 10 If (V, K) is a PYK system
whose associated E-graph is the set of kinetic
complexes of a weakly reversible (PL-FSK)
system and has zero deficiency, then (N, K)
has a positive equilibrium for each rate con-
stant.

Proof. Let (N, K)be a PYK system, (N 5, K5)
be the associated EMAK system, (N’, K) be
a PL-FSK system and N’ be the set of kinetic
complexes of (N’ K’), also an E-graph.

Suppose N be a weakly reversible and

By our assumption, NV ; = N’ and weakly
reversible. It follows that NV’ is also weakly
reversible.

Using Miiller-Regensburger Criterion
(Muller S. and Regensburger G., 2014),

0=10g(Ng)=06N")=05(N)

implies that there exists a positive equilib-
rium for (N g, Kg) and hence by dynamic
equivalence for (V, K). O

It is then clear that weakly reversibility is
an essential property to have a positive equi-
librium. Now, it is important to find suffi-
cient conditions for PYK to have a weakly re-
versible E-graph. The next proposition gives
a condition of a PLDS to generate a weakly
reversible E-graph. The proof is similar to
the proof of Lemma 9.2 of the expository work
of Gubberman (2003) on mass action systems
and the deficiency zero theorem.

Proposition 11 If a polynomial dynamical
system (PLDS) is complex balanced then the
E-graph G = (V, E) that generates the sys-
tem is weakly reversible.

Proof. Suppose PLDS is complex (vertex) bal-
anced. Then there exists an E-graph, G(V, F)
that generates the system and there exists a
point x € RZ, such that for any vertex s € V'
we have

> ke =

e=(s,s’)eE

(10)

> ks
e=(s’,s)eE

Consider a subset N of complex (vertex)
indices such that, if s* € N,s’ — s implies
that s € V. Summing over elements of V in
equation (10) gives
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o> k2 =) > k.

seN e=(s,s’)eE seN e=( )eE
(11)
Clearly,
D 2 Kwan® =) > ki g® (12)

SEN s’eN SEN s’eN

is true, since the left-and-right-hand sums
are the same. Combining these two equations
gives

Z Z k(‘s’s/)ZES/ = Z Z k(s’,s)jsa

SEN s’eN’ SeEN s’eN’
(13)

where N’ is the set of all complex indices not
in . However, by the definition of N, the
right-hand side of equation (13) is zero, since
no complexes (vertices) in N react with com-
plexes (vertices) outside . That means that
the left hand side of the equation is also zero,
so the conditions on NV imply that, if s € N
and s — s/, then s € V as well.

Now, for a complex (vertex) s, define the
set s, as

s, = {v| there is a directed path from s to v
(s=v)}.

This set satisfies the properties of N
above, so if s’ — s, then s" € s,. Conversely,
assume s’ = s; then, the transitivity of the
operation = implies that s = s’; since this is
true for all s”, the system is weakly reversible.
O

Corollary 11.1 If (NV,K) is a PYK system
which 1s mapped to a complex balanced
PLDS, then the associated E-Graph is weakly
reversible.

The following are extensions of two known
theorems from MAK to EMAK systems.

Proposition 12 If an EMAK system has a
complex balanced equilibrium, then its un-
derlying network is weakly reversible (Horn,
1972).

Proof. Recall that a digraph is weakly re-
versible if and only if ker I, contains a posi-
tive vector. This is true also for E-graph. The
image of the assumed complex balanced equi-
librium is such a vector, hence the network is
weakly reversible. O

Proposition 13 If an EMAK system has
zero deficiency, then any positive equilibrium
1s complex balanced (Feinberg, 1972).

Proof. Zero deficiency means that Ker Y5 N
Im I, g is the nullspace, hence the image of
any positive equilibrium must be in Ker I, .
[

PYK SYSTEM WITH CYCLE TERMINAL
AND
t-MINIMAL ASSOCIATED EMAK
SYSTEMS

In this section, we study the poly-PL Kki-
netics whose associated EMAK system is the
set of kinetic complexes of a weakly reversible
PL-FSK system and has zero deficiency. It
follows from the results of Miiller and Regens-
burger (2014) that the EMAK system has a
complex balanced equilibrium for any set of
rate constants.

Characteristics of Cycle Terminal
Associated EMAK Systems

Recall that a digraph is cycle terminal if and
only if each vertex is a source vertex, 1i.e.
n, = n. Since n —n, = t,, the number of
terminal strong connected components that
are single vertices, equivalently, it is a di-

graph where ¢t = t_, i.e. all terminal strong

co
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connected components are cycles.

For the associated E-graph, this means
that all the complexes are of the form s, ;,
which leads to the following straightforward
Proposition:

Proposition 14 An associated E-graph N,
is cycle terminal if and only if for each s},
there is another s, with s;;—s;, € 7, (y; —v,),
r; € RT.

For a cycle terminal digraph, S is con-
tained in R and 0 < 6, — ¢ < /. In the next
proposition, we present an upper bound of the
deficiency of a cycle terminal E-graph.

Proposition 15 For a cycle terminal E-
graph, dp < hr—1—s.

Proof. Note that that hr is an upper bound for
the number of s, ;’s . With this, ng < hr.
The fact that /5 > 1 implies

6E:nE—€E—SE§hT—1—S.

Properties of t-minimal Associated
EMAK Systems

For t-minimal E-graphs, we have the follow-
ing extension of the Subspace Coincidence
Theorem of Feinberg and Horn (1977):

Theorem 16 If an E-graph is t-minimal,
then KE = SE'

Proof. Since an E-graph is t-minimal, that is
Now, we have to show that Ky = Im YA, 5.

Observe that,

Ky = span(Im fg)
= Span(YEAkE¢E<RS>)
=Yg AkE(WRS))
= YEIaEIkE<Rp(ﬂ€))
=Ygl g dz’ag(k:)p};(Rp(ﬂ)
=Ygl g dz’ag(k:)p%(R@)
= YEIaEIkE(R€>
=Yg AkE(R€>
=Yg(ImA,g)=ImYgA,g.

O

The proof is adapted from Theorem 2 of
the paper of Arceo et. al (2015).

In a nonbranching network, n,, = r. If a
network is nonbranching then it is t-minimal.
Now, combining these properties to a cycle
terminal E-graph, we have the following re-
sult.

Proposition 17 If the E-graph is cycle ter-
minal and nonbranching, then ny = hr.

Proof. If an E-graph is cycle terminal, then
ng = n, g. Suppose it is also nonbranching.
This implies that n,. , = ry = hr. Hence,
ng = hr. u

Since a weakly reversible network is cycle
terminal, Proposition 17 is true for weakly re-
versible nonbranching E-graph.

THE ASSOCIATED E-MAK SYSTEMS
OF A CLASS OF PYK-SSK SYSTEMS

Recall that for a mono-PL kinetics, com-
plex factorizability is equivalent to equality
of the kinetic complexes (also called “kinetic
order vectors” or “interactions” for PLK sys-
tems) and coefficients if two reactions have
the same reactant complex. Factor span sur-
jectivity in addition is equivalent to the con-
verse implication. For any complex factoriz-
able kinetics, the network is span surjective if
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and only if it is nonbranching and K is factor
span surjective.

First, we introduce a new term as follows:

Definition 10 A poly-PL system is integral
if all its coefficients a,; are positive integers.
For a mono-PL system, we write a,; for a,.

We simplify the double indices “i1” to “”,
le. F; = F;q, etc. wherei=1,...,r.

In the next proposition, we compare sys-
tems involving integral mono-PL kinetics.

Proposition 18 Let N = (85,C,R) be a cy-
cle terminal CRN, and p,7 : & — C the re-
actant and product maps, respectively. Fur-
thermore, let K be an integral mono-PL ki-
netics with the following properties:

1. K is span surjective.

ii. Foreachi, F; = F; + a;(y}
if and only if 7(r;) = p(r;).

—yj)forj#i

Then the associated E-MAK system NV g is the
set of kinetic complexes of the system N/ =
(8,6’,R") where R’ consists of the reactions
vl a;y; — a;y. foreachr, 1y, — y, in R and
K. (z) = C%Km (x). The nonbranching N,
N’ and N g are isomorphic as digraphs, and
N’ = N diag(a) and K’ = diag(%)K, where
a = (ay,...,a,), so that all network and ki-

netic properties coincide.

Proof. Condition (i) infers that NV is necessar-
ily nonbranching. The first part is to show
that V= N/ = N j as digraphs.

(a) Note that the vertices in NV g are F;’s and
the arcs the reactions F;, — F, +V, where
V,’s are the reaction vectors a, (y; —y, ) for
each reactionin N/, r’ : a,y, — a,;y. of R’.

Define v : N' — N g where y(n(r;)) = F}.
Now, considering condition (i1), it will lead
to (V) = Vg and v(A) = Ag (v(X) =

Rg). Thus, N =2 N g.

(b) Also, we definew : N — N’ where w(y;) =
a;y;. This implies that w(V) = V’ and
w(A) = A" W(R) = R’) where A is the
sets of arcs. Hence, V=~ N’.

By (a) and (b), N = N 5 = N”.

As a result, since 7/ : a,;y; — a,y. for each
7yt y; = y;in Rand K/, (z) = %Km(x) then
N’ = N diag(a) and K’ = diag(1/a)K, where

a=(ay,..,a,). O

Remark 3 We call the set of power law ki-
netics fulfilling (i) and (i1)), PL-ESK (ESK =
EMAK Similar Kinetics). For these kinet-
ics, N/ = N. MAK systems always satisfies
(i1) In fact, for these, the Craciun map is the
identity, i.e. (N,K) = (N g, Kg). However,
only span surjective MAK systems belong to
MAK-ESK.

Corollary 18.1 For mono-PL systems satis-
fying assumptions (i) and (ii) of Proposition 18
, 0/ =0=10g.

Proof. Since N/ = N diag(a), S" = Im N’ =
Im N = S = Sg. Since the digraphs are iso-
morphic, n” — ¢/ = n —{ = ngy — {g, which
proves the claim. O

We can clearly extend the kinetic defi-
ciency concept of Miiller and Regensburger
from PLK to mono-PL systems, and conclude
from the above that also § = § = §’. In par-
ticular, if V is weakly reversible and has zero
deficiency, then it has complex balanced equi-
libria for each set of rate constants. Due to
the dynamic equivalence and equal deficiency
with N’, the latter also has complex balanced
equilibria for each set of rate constants. If N
has positive deficiency, then the criterion for
the existence of complex balanced equilibria
of Miiller-Regensburger for positive kinetic
deficiency can be applied.

At this point, we extend our scope to CF
integral poly-PL systems (h > 1). We first
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consider an example of a bi-PL system to ap-
preciate the challenge of extending the re-
sult to higher term numbers (h > 1). To
relate network properties to its EMAK, we
need to be able to map a reaction to a con-
struct in the latter. One way to do this is to
take the pair (F;;, F;5) of reaction r; which
we call the kinetic complex vector of the reac-
tion and require that F;, is the product of the
reaction with reactant F;;, or equivalently,
Fip = Fiy +viy = Fyy + a5 (y; — ;).

Y1

ol >
Y2 Y3

f3

fa | xF, fs

Ya v_r:

However, we immediately see a potential
difficulty: if two kinetic complexes are equal,
then the topology of the E-graph will differ
(maybe substantially) from that of the CRN.
For example, branching reactions r; and rq
will be identified or if F,; = F5;, two re-
versible reactions result from one. A sim-
ple way (it may not be the only one) to pre-
vent such complications is to require that the
kinetics be maximally span surjective, i.e.
the kinetic complexes are pairwise distinct.
This hypothesis has two immediate conse-
quences: N and N are necessarily non-
branching. Clearly, as in the mono-PL case,
we need Property (i1) for all reactions, e.g.
F,, = Fgy + vg5. Hence, an extension of the
previous result to PYK systems with A > 11is
the following:

Proposition 19 Let V = (8,C,R) be a cycle
terminal CRN, and p, 7 : & — € the reactant
and product maps respectively. Furthermore,

let K be an integral poly-PL kinetics with the
following properties:

1. K is maximally span surjective;

ii. for each i, F;; = Fjj, + a;;,(y; — y;) for
j# iiff 77(%‘) = p(r;);

iii. for each i, F; ;1) = F;; +a;;(y, — y,) for
j=1,..,h—1.

Then the associated E-MAK system NV g is the
set of kinetic complexes of an integral mono-
PL system N/ = (§,€’,R") where R’ consists
of the reactions 7;; : a;;y; — a,;y; for each
r, +y; — y,in R and K;/J(x) = %”Kr(az)
Hence, { = (g, N/ and N g are isomorphic
as digraphs, and N’ is the m z hr matrix
(N1, Ny, ..., N,,), where N; = N diag(a;), a; =
(a4, a,; and K} = diag(-)K.
J

Proof. Condition (i) implies that the kinetic
complexes are pairwise distinct. With this,
N and N are necessarily non-branching.
Hence, ¢ = (.

Define w Ng — where w(F;;) =
a,;;y;- Using conditions (i1) and (ii1), we have
w(Vg) =V and w(Ag) = A (W(Rg) = R).
Hence, N = N’. We need condition (ii) as
in the mono-PL case in Proposition 19.

Since N/ is an integral mono-PL system,
every j*"term in an integral poly-PL kinet-
ics of each reaction corresponds to N; =
N diag(a;) where a; = (a;;,...,a,;). Hence,
N’ is n x hr matrix of the form (N; N, -+ N,,).
O

Corollary 19.1 For PYK systems with h > 1,

Proof. Observe that

O
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Remark 4 Note that Proposition 19 is an ex-
tension of Proposition 18 for nonbranching
N since K maximally span surjective implies
that it is span surjective which for CF systems
is equivalent to NV nonbranching and K fac-
tor span surjective. Note also that for h = 1,
dp=(1—=1)n+0=0.

SUMMARY AND CONCLUSION

The topics covered in this paper are moti-
vated by the fact that poly-PL kinetics gen-
erate power law dynamical systems, which
via a method introduced by G. Craciun can
be mapped to EMAK systems using E-graph.
A map from PYK to EMAK or Craciun’s E-
graph is shown to establish some network re-
lationships. From this, we identify results on
positive equilibria of PYK systems based on
their E-graph/EMAK representations. Our
main structural results show the coincidence
of the stoichiometric subspaces of the network
and its associated E-graph as well as the con-
servation of the positive dependency, which
is a necessary condition for the existence of
positive equilibria. Analysis were also done
on cases where the associated E-grpah is t-
minimal and cycle terminal.
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Appendix

List of Acronyms

CF

CKS
CRN
CRNT
DZT
EMAK
FSK
MAK
ODE
POK
PLDK
PLK
PL-ESK
PL-NDK
PL-RDK
PSK
PYK
RID
RDK
SFRF

complex factorizable

chemical kinetic system

chemical reaction network

chemical reaction network theory

deficiency zero theorem

embedded mass action kinetics

factor span surjective

mass action kinetics

ordinary differential equations

polynomial kinetic system

polynomial dynamical systems

power law kinetics

power-law EMAK similar kinetics
power-law non-reactant determined kinetics
power-law reactant determined kinetics
power law kinetics system

poly-PL Kinetics

rate constant-interaction map-decomposable
reactant determined kinetics

species formation rate function

List of Symbols

(N, K)
Ap

Ak E
A(D)

SHw

(N, K)

e

~
g

Q

E

R

Chemical Kinetic System
Laplacian map
Laplacian map (E-graph)
set of arcs

Digraph

Set of positive equilibria
Kinetic Order Matrix
Incidence map

Incidence map (E-graph)
Kinetics of a CRN
Kinetics of a CRN (E-graph)
rate function
Stoichiometric map
Reactant Subspace
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Stoichiometric Subspace
Stoichiometric Subspace (E-graph)
set of vertices

Map/matrix of complexes
Map/matrix of complexes

Set of positive balanced steady states
Deficiency of a CRN

Reactant Deficiency

Reactant Deficiency (E-graph)
Number of lingkage classes

Set of complexes

Type of RID Kinetics

Set of reactions

Set of species

Chemical Reaction Network
Product map

Reactant map

terminality of the network
terminality of the network (E-graph)
rank difference

rank difference (E-graph)

1 reacts to j

Edge in E-graph

Rate vector

Number of species

Number of complexes

Number of complexes (E-graph)
Number of reactants

parameter map

Reactant Rank

Number of reactions

Number of reactions (E-graph)
Rank of a CRN

Rank of a CRN (E-graph)

Number of strong linkage classes
Number of strong linkage classes (E-graph)
Source Vertex in E-graph

Target Vertex in E-graph

Number of terminal strong linkage classes
number of cycle-terminal classes
number of point-terminal classes
Edge Vector in E-graph





